

The deep neural network designed by Professor Noé’s team is a new way of representing the wave functions of electrons. It offers unprecedented accuracy at a still acceptable computational cost.” We believe that deep “Quantum Monte Carlo,” the approach we are proposing, could be equally, if not more successful. “As yet, the most popular such outlier is the extremely cost-effective density functional theory. Jan Hermann of Freie Universität Berlin, who designed the key features of the method in the study. “Escaping the usual trade-off between accuracy and computational cost is the highest achievement in quantum chemistry,” explains Dr. Other methods represent the wave function with the use of an immense number of simple mathematical building blocks, but such methods are so complex that they are impossible to put into practice for more than a mere handful of atoms. This however requires approximations to be made, limiting the prediction quality of such methods.

Many methods of quantum chemistry in fact give up on expressing the wave function altogether, instead attempting only to determine the energy of a given molecule. The wave function is a high-dimensional entity, and it is therefore extremely difficult to capture all the nuances that encode how the individual electrons affect each other. Central to both quantum chemistry and the Schrödinger equation is the wave function – a mathematical object that completely specifies the behavior of the electrons in a molecule.
